在静电学里,电势能(Electric potential energy)是处于电场的电荷分布所具有的势能,与电荷分布在系统内部的组态有关。电势能的单位是焦耳。电势能与电势不同。电势定义为处于电场的电荷所具有的电势能每单位电荷。电势的单位是伏特。
电势能的数值不具有绝对意义,只具有相对意义。所以,必须先设定一个电势能为零的参考系统。当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远),都相对静止不动时,这物理系统通常可以设定为电势能等于零的参考系统。
假设一个物理系统里的每一个点电荷,从无穷远缓慢地被迁移到其所在位置,总共所做的机械功为 W ,则这拿罩迟物理系统的电势能U 为U=W。在这过程里,所涉及的机械功 W,不论是正值或负值,都是由这物理系统之外的机制赋予,并且,缓慢地被迁移的每一个消李点电荷,都不会获得任何动能。如此计算电势能,并没有考虑到移动的路径,这是因为电场是保守场,电势能只跟初始位置与终止位置有关,与路径无关。
电势(英语:electric potential)定义为处于电场中某个位置的单位电荷所具有的电势能。电势又称为'''电位''',是标量。其数值不具有绝对意义,只具有相对意义,因此为了便于分析问题,必须设定一个参考位置,并把它设为零,称为零势能点。通常,会把无穷远处的电势设定为零。那么,电势可以定义如下:假闷派设检验电荷从无穷远位置,经过任意路径,克服电场力,缓慢地移动到某位置,则在这位置的电势,等于因迁移所做的机械功与检验电荷量的比值。在国际单位制里,电势的度量单位是伏特(Volt),是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro Volta)而命名。
拓展资料:
电势必需满足泊松方程,同时符合相关边界条件;假设在某区域内的电荷密度为零,则泊松方程约化为拉普拉斯方程,电势必需满足拉普拉斯方程。
在电动力学里,当含时电磁场存在的时候,电势可以延伸为“广义电势”。特别注意,广义电势不能被视为电势能每单位电荷。