代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。
注意乱碧销:
1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
2、可以有绝对值。例如:|x|,|-2.25|等。
发展
代数式概念的形式与发展经历了一个漫长的历史发展过程,13世纪,斐波那契(Fibonacci,L.)就开始采用字母表示运算对象,但尚未使用运算符号,韦达(Viete,F.)于1584-1589年间,引入数学符号系统,使代数成为关于方程的理论。
因而人们普遍认为他是代数式的创始人笛卡儿对韦达的字母用法作了改进,用拉丁字母表中前面的字母a,b,c,...表示已知数慧羡,用末尾的一些字母x,y,z,...表示未哗游知数,莱布尼茨(Leibniz,G,W.)对各种符号记法进行了系统研究,发展并完善了代数式的表示方法。