真子集就是包含某集合的其中的一个或若干个元素但又不全部包含的集合。
如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,那么集合A叫做集合B的真子集(proper subset)。如果A包含于B,且A不等于B,就说集合A是集合B的真子集。
假如说有一个集合{1,2},它的真子集就有空集,{1}和{2},而{1,2}只能叫它的子集而不是真子集,空集是没有任何元素的集合,是除了空集外任何集合的真子集。
集合的性质:
1、确定性
对任意对象都能确定它是不行配是某一集合的元素,这是集合的最基本特征。没有确定性就不能成为集合。如“很大的数”、“个子较高的同学”都不能构成集合。
2、互异性
集合中的任何两个元素都不相同,即在同乱隐一集合里不能出现相同元素。如把两个集合{1,2,3,4},{3,4,5,6,7}的元素合并在一起构成一个新集合,那么这个新集合只能写成{1,2,3,4,5,6,7}。
3、无序性
集合中的元素是平等的,没有先后顺序。因此判定两个集合是否相同,只需要比较他们的元素是否一样,不需考察排列顺序是否一样。如:{a,b,c}={a,c,b}。
以上内容参考:百度百科-真档陪指子集