您的位置首页百科知识

有阶乘的极限怎么算

有阶乘的极限怎么算

【阶乘的概念】 阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。 阶乘,也是数学里的一种术语。[编辑本段]【阶乘的计算方法】 阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。 例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。[编辑本段]【阶乘的表示方法】 在表达阶乘时,就使用“饥橡羡!”来表示。如x的阶乘,就表示为x! 如:n!=n×(n-1)×(n-2)×(n-3)×...×1 阶乘的另一种表示方法:(2n-1)!! 当n=2时,3!!=3×1=3 当n=3时,5!!=5×3×1=15 当n=4时,7!!=7×5×3×1=105 ...(以此类推)[编辑本段]【20以内的数的阶乘】 以下列出0至20的阶乘: 0!=1, 1!=1, 2!=2, 3!=6, 4!=24, 5!=120, 6!=720, 7!=5040, 8!=40320 9!=362880 10!=3628800 11!=39916800 12!=479001600 13!=6227020800 14!=87178291200 15!=1307674368000 16!=20922789888000 17!=355687428096000 18!=6402373705728000 19!=121645100408832000 20!=2432902008176640000 另外,数学家定义,0!=1,所以0!=1![编辑本段]【阶乘的定义范围】 通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。 ¤伽玛函数(Gamma Function) Γ(x)=∫e^(-t)*t^(x-1)dt (积分下限是零上限是+∞)(x>0,-1,-2,-3,……) 运用积分的知如返识,我们可以证明Γ(x)=(x-1) * Γ(x-1) 所以,当x是整数n时,Γ(烂拍n) = (n-1)(n-2)……=(n-1)! 这样Gamma 函数实际上就把阶乘的延拓。 ¤欧拉等式 x!=)=∫-(ln(x))^ndx (积分下限是零上限是+1)(x>0) ¤[计算机科学] 用Ruby求365的阶乘。 def AskFactorial(num) factorial=1; 1.step(num,1){|i| factorial*=i} return factorial end factorial=AskFactorial(365) puts factorial ¤【阶乘有关公式】 n!~sqrt(2*pi*n)(n/e)^n 该公式常用来计算与阶乘有关的各种极限。