鸡兔同笼公式 解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数 解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数 解法3:总脚数÷2—总头数=兔的只数 总只数—兔的只数=鸡的只数 例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多陵纳了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:①鸡有多少只? (4×6-128)÷(4-2) =(184-128)÷2 =56÷2 =28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚旅汪樱数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又拆丛如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。 解:(2×100-80)÷(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。
相关文章
-
氢氧化钠标定公式
2023-05-20 00:00 阅读(646) -
根号的四则运算公式
2023-05-19 09:18 阅读(613) -
高二物理公式有哪些?
2023-05-19 06:22 阅读(634)
1 资产负债表公式36个
634 阅读
2 高一物理公式有哪些?
572 阅读
3 全排列计算公式是什么?
647 阅读
4 不定积分的基本公式有哪些?
587 阅读
5 银行存款利息计算公式?
601 阅读