您的位置首页生活百科

切线角定来自理

切线角定理如下:

弦切角定理:圆上的一条弦与经过这条弦上一端点的切线的夹角,等于这条弦所对的圆周角。

在⊙O中,AD为圆上一弦,AB与圆相切与A,P为圆上不与A重合的任意一点,

∠2为弦AD所对的圆周角,至密什时短培证明∠DAB=∠2。

证明:过点A连接O延长AO交⊙O与C取D为圆上任意一点连结CD、AD

则∠CDA=90°

∵AB与⊙O切于A∠CAB=90

∴∠DAB+∠CAD=∠1+∠CAD=90

∴360问答∠DAB=∠1

又∵弦AD=弦AD∠1=∠2

∴∠DAB=∠2

可推∠1病各压财站每某酒液战=∠2=∠DAB。

切线角定来自理

切分附适力盾销父球药线角即弦切角。弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。与圆相切的直线,同圆内与圆相交的弦相交所形成的夹角叫做弦切角。