您的位置首页生活百科

y*dy/dx=x*(1-y^2)的通解是

y*dy/dx=x*(1-y^2)的通解是

解:(1)显然,y=1是原方程的解

(2)当y≠1时,

∵dy/dx=(1-y)/(y-x)

==>(y-1)dx-xd见素度卷频乙y=-ydy

==>dx/(y-1)-xdy/(y-1)^2=-ydy/(y-1)^2

(等式两端同除(y-1察何连矛评春)^2)

==>d(x/(y-1))=[-1/(y-1)-1/(y-1)^2]dy

==>x/(y-1)=-计附客陆评防客甲ln│y-1│+1/(y-1)+ln│c│

(c是非零常数)

==>(x-1)/(y-1)=ln│c/(y-1)│

==>e^((x-1)/(y-1))=c/(y-1)

==>y析使否井脱-1=ce^((x-1)/(减减供项业病1-y))

==>y=1+ce^((x-1)/(1-y))

∴y=1+ce^((x来自-1)/(1-y)绿起甚非阳假)也是原方程的解

故综合(360问答1)和(2)知,原方程的通解是y=1和y=1+ce^((x-1盟并)/(1-y))(y≠1)。