毕达哥拉斯(Pythagoras,572 BC—497BC)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。 毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养,大约在公元前530年又返回萨摩斯岛。后来又迁居意大利南部的克罗通,创建了自己的学派,一边从事教育,一边从事数学研究。 毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28, 496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。当今数学上又有“毕达哥拉斯三元数组”的概念,指的是可作为直角三角形三条边的三数组的集合。 在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。 毕达哥拉斯学派认为数最崇高,最神秘,他们所讲的数是指整数。“数即万物”,也就是说宇宙间各种关系都可以用整数或整数之比来表达。但是,有一个名叫希帕索斯的学生发现,边长为1的正方形,它的对角线(根2)却不能用整数之比来表达。这就触犯了这个学派的信条,于是规定了一条纪律:谁都不准泄露存在根2 (即无理数)的秘密。天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。但根2很快就引起了数学思想的大革命。科学史上把这件事称为“第一次数学危机”。希帕索期为根2殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变成科学的敌人,最终被科学所埋葬。 可惜,朝气蓬勃的毕达哥拉斯,到了晚年不仅学术上趋向保守,而且政治上反对新生事物,最没薯后死于非命。 在古希腊早期的数学家中,毕达哥拉斯的影响是最大的。他那传奇般的一生给后代留下了众多神奇的传说。 毕达哥拉斯生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。 他既是哲学家、数学家,又是天文学家。燃察罩他在年轻时,根据当时富家子弟的惯例,曾到巴比伦和埃及去游学,因而直接受到东方文明的熏陶。回国后,毕达哥拉斯创建了政治、宗教、数学合一的秘密学术团体,这个团体被后人称为毕达哥拉斯学派。这个学派的活动都是秘密的,笼罩着一种不可思议的神秘气氛。据说,每个新入学的学生都得宣誓皮闹严守秘密,并终身只加入这一学派。该学派还有一种习惯,就是将一切发明都归之于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。 毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的另一贡献,他的一个学生希帕索斯通过勾股定理发现了无理数,虽然这一发现打破了毕达哥拉斯宇宙万物皆为整数与整数之比的信条,并导致希帕索斯悲惨地死去,但定理对数学的发展起到了巨大的促进作用。此外,毕达哥拉斯在音乐、天文、哲学方面也做出了一定贡献,首创地圆说,认为日、月、五星都是球体,浮悬在太空之中。 小故事: 毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。
相关文章
-
王羲之生平事迹200字
2023-08-23 02:35 阅读(649) -
周鲁的生平事迹是什么?
2023-08-14 16:00 阅读(616) -
宋子良的生平事迹
2023-08-06 05:18 阅读(646)