(1) ∫晌陪x^αdx=x^(α+1)/(α+1)+C (α≠-1)(2) ∫1/x dx=ln|x|+C(3) ∫a^x dx=a^x/lna+C∫e^x dx=e^x+C(4) ∫cosx dx=sinx+C(5) ∫sinx dx=-cosx+C(6) ∫(secx)^2 dx=tanx+C(7) ∫(cscx)^2 dx=-cotx+C(8) ∫secxtanx dx=secx+C(9) ∫cscxcotx dx=-cscx+C(10) ∫1/(1-x^2)^0.5 dx=arcsinx+C(11) ∫1/(1+x^2)=arctanx+C(12) ∫1/(x^2±1)^0.5 dx=ln|x+(x^2±1)^0.5|+C(13) ∫tanx dx=-ln|cosx|+C(14) ∫cotx dx=ln|sinx|+C(15) ∫secx dx=ln|secx+tanx|+C(16) ∫cscx dx=ln|cscx-cotx|+C(17) ∫1/(x^2-a^2) dx=(1/2a)*ln|(x-a)/(x+a)|+C(18) ∫1/(x^2+a^2) dx=(1/a)*arctan(x/a)+C(19)∫1/(a^2-x^2)^0.5 dx=arcsin(x/a)+C(20)∫1/(x^2±a^2)^0.5 dx=ln|x+(x^2±a^2)^0.5|+C(21)∫(1-x^2)^0.5 dx=(x*(1-x^2)^0.5+arcsinx)/2+C补充回答: 微积分计算法则有很多: ”其实微分的实质就是求导” 1.基本函数微分公式 dx^n=nx^(n-1)dx dsinx=cosxdx dcosx=-sinxdx dtanx=(secx)^2dx dcotx=-(cscx)^2dx dloga x=1/xlnadx da^x=a^xlnadx de^x=e^xdx dlnx=1/xdx 2.微分本身的运算公式(以下f,g均为关于x的函数) d(kf)=kdf d(f+g)=df+dg d(f-g)=df-dg d(f*g)=gdf+fdg d(f/g)=(gdf-fdg)/g^2 3.复合函数运算公式(f,g同上) d[f(g)]=f'[g]*dg $$$绝历$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 积分运算公式 ”积分实质就是已知导数,求原函数” 相对宴宏蠢而言这相当难,而且答案不止一个 1.基本公式(以下C为常数) ∫x^ndx=1/(n+1)*[x^(n+1)]+C ∫sinxdx=-cosx+C ∫cosxdx=sinx+C ∫tanxdx=ln|secx|+C ∫cotxdx=ln|sinx|+C ∫e^xdx=e^x+C ∫a^xdx=a^x/lna+C ∫lnxdx=xlnx-x+C ∫loga xdx=lna[xlnx-x]+C 运算基本公式:(f,g为x的函数) ∫kfdx=k∫fdx ∫(f+g)dx=∫fdx+∫gdx ∫(f-g)dx=∫fdx-∫gdx 以下介绍三大方法求积分(难) 1.第一换元法(凑微分法) ∫f[g(x)]g'(x)dx=∫f[g(x)]d[g(x)]=F[g(x)]+C 2.第二换元法 这是运用例如三角换元,代数换元,倒数换元等来替换如根号,高次等不便积分的部分. 3.分部积分法 ∫f(x)*g(x)dx=F(x)g(x)-∫F(x)g'(x)dx 而∫F(x)g'(x)dx易求出 定积分用牛顿_菜布尼兹公式
相关文章
1 怎么求货币供给量?用什么公式?
603 阅读
2 在电流公式i=dq/dt中d是什么意思
631 阅读
3 赛尔号哈尔翼蜂融合公式
603 阅读
4 中央经线的经度公式怎样计算中央经度线
612 阅读
5 微积分教材
613 阅读