您的位置首页百科知识

三角函数和差化积公式

三角函数和差化积公式

三角函数全部公式:两角手饥和与毕中返差的三角函数  cos(α+β)=cosα·cosβ-sinα·sinβ  cos(α-β)=cosα·cosβ+sinα·sinβ  sin(α±β)=sinα·cosβ±cosα·sinβ  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式  sin(2α)=2sinα·cosα=2/(tanα+cotα)  cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2   tan(2α)=2tanα/(1-tan^2α)  cot(2α)=(cot^2α-1)/(2cotα)  sec(2α)=sec^2α/(1-tan^2α)  csc(2α)=1/2*secα·cscα三倍角公式  sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)  cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)  tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) =tanαtan(π/3+α)tan(π/3-α)  cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)n倍角公式  sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…  cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式  sin(α/2)=±√((1-cosα)/2)  cos(α/2)=±√((1+cosα)/2)  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα  cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)  sec(α/2)=±√((2secα/(secα+1))  csc(α/2)=±√((2secα/(secα-1))辅助角公式  Asinα+Bcosα=√(A^2+B^2)sin(α+φ)培档(tanφ=B/A)  Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)万能公式  sin(a)= (2tan(a/2))/(1+tan^2(a/2))  cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))  tan(a)= (2tan(a/2))/(1-tan^2(a/2))降幂公式  sin^2α=(1-cos(2α))/2=versin(2α)/2  cos^2α=(1+cos(2α))/2=covers(2α)/2  tan^2α=(1-cos(2α))/(1+cos(2α))三角和的三角函数  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)其它公式  1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2  csc(a)=1/sin(a) sec(a)=1/cos(a)  cos30=sin60  sin30=cos60推导公式  tanα+cotα=2/sin2α  tanα-cotα=-2cot2α  1+cos2α=2cos^2α  1-cos2α=2sin^2α  1+sinα=[sin(α/2)+cos(α/2)]^2其他及证明  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0  以及  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx  证明:  左边=2sinx(cosx+cos2x+...+cosnx)/2sinx  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)  =[sin(n+1)x+sinnx-sinx]/2sinx=右边  等式得证  sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx  证明:  左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)  =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边  等式得证  三倍角公式推导  sin3a  =sin(2a+a)  =sin2acosa+cos2asina  =2sina(1-sin^2a)+(1-2sin^2a)sina  =3sina-4sin^3a  cos3a  =cos(2a+a)  =cos2acosa-sin2asina  =(2cos^2a-1)cosa-2(1-cos^2a)cosa  =4cos^3a-3cosa  sin3a=3sina-4sin^3a  =4sina(3/4-sin^2a)  =4sina[(√3/2)^2-sin^2a]  =4sina(sin^260°-sin^2a)  =4sina(sin60°+sina)(sin60°-sina)  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]  =4sinasin(60°+a)sin(60°-a)  cos3a=4cos^3a-3cosa  =4cosa(cos^2a-3/4)  =4cosa[cos^2a-(√3/2)^2]  =4cosa(cos^2a-cos^230°)  =4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}  =-4cosasin(a+30°)sin(a-30°)  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]  =-4cosacos(60°-a)[-cos(60°+a)]  =4cosacos(60°-a)cos(60°+a)  上述两式相比可得  tan3a=tanatan(60°-a)tan(60°+a)