磁悬浮列车的原理:
使用安装在车辆两侧转向架上的正常导电磁铁(悬挂电磁铁)和嫌唯者铺设在线路导轨上的磁铁,磁场产生的吸引力将使车辆浮动。车辆和轨道面粉之间的间隙与吸引力的大小成反比。
为了保证这种悬挂的可靠性和列车的平稳运行,并使直线电机具有更高的功率,必须精确地控制电磁铁中的电流,以便磁场保持稳定的强度和悬挂力,并且在车体和导轨之间保持大约10毫米的间隙。
通常,用于测量间隙的气隙传感器用于执行系统的反馈控制。这种悬挂方式不需要特殊的着陆支撑装置和辅助着陆轮,对控制系统的要求可以稍低一些。
因为超导磁体的电阻为零芹薯,所以在操作中几乎不消耗能量,并且磁场强度非常高。超导体和导轨之间产生的强大排斥力可以使车辆漂浮。当车辆向下移动时,超导磁体和悬浮线圈之间的距离减小,电流增加,悬浮力增加,车辆自动返回到初始悬浮位置。
这个间隙与速度大小有关,车体只有在达到100公里/小时时才能浮动,因此,车辆必须配备机械辅助支撑装置,如辅助支撑轮和相应的弹簧支撑,以确保列车安全可靠地着陆。控制系统应能实现启动和停止的精确控制。
扩展资料:
我国上海的磁悬浮列车全长30千米,于2006年正式开始运营,是世界上第一条磁悬浮列车示范运营线。
日本是拥有世界上最先进的火车体系的国家之一。新干线,即子弹头列车,以每小时200千米的速度跑完数千千米的距离。每山散天有270列子弹头列车运送34万乘客往来日本全境。
自从1964年日本铁路体系运行以来,火车已运送18亿旅客,无一伤亡。这种性能良好的系统不但方便快捷,而且不用石油供给能量。
致力于日本国家铁路的技术专家已经对标准的磁悬浮列车进行了试验。这种列车实际上可以沿指定的轨道以每小时500千米的速度飘于磁面前行。这种磁力通过电磁铁而产生。
这种列车通过磁力进行推进、悬浮、制动。一些特制的磁线圈安装于火车的主体结构中,其他的磁线圈被安装于支撑列车的U形铁轨的底部和侧面。通电后,列车及铁轨的磁线圈将产生南北极磁场。列车及铁轨的磁线圈生成的磁力会相互吸引或相互排斥。
低维修率也是磁悬浮列车的一个优势,因为它们不像传统列车有活动的部分或钢轮。事实上,这减少了钢轨的摩擦与损耗,不会形成高昂的维修费用。此外,设备检查、铁轨维修、零件更换也无需太多时间。
目前为止,一般的子弹火车能以 200 km/h 的速度前进。由于火车与路轨之间的磨擦力限制了火车的最高速度,
所以人们便开始研究能悬浮于路轨之上的火车,于是便有磁浮火车的出现了。顾名思义,磁浮火车是利用磁力使火车悬浮于路轨之上。磁浮火车经常被称为 MagLev,即 Magnetically Levitated train 的简写。
但是,利用一般的 磁铁并不能把火车稳定地浮起。要是你将两块磁铁的北极相对,你会发现无法使一块磁铁稳定地浮在另一块上 。所以,要把火车浮起并不如想象中般简单。
磁悬浮列车是由无接触的电磁悬浮、导向和驱动系统组成的新型交通工具,磁悬浮列车分为超导型和常导型两大类。简单地说,从内部技术而言,两者在系统上存在着是利用磁斥力、还是利用磁吸力的区别。
从外部表象而言,两者存在着速度上的区别:超导型磁悬浮列车最高时速可达500公里以上(高速轮轨列车的最高时速一般为300—350公里),在1000至1500公里的距离内堪与航空竞争;而常导型磁悬浮列车时速为400~500公里,它的中低速则比较适合于城市间的长距离快速运输。
参考资料来源:百度百科-磁悬浮列车