您的位置首页百科问答

已知微分方程的通解怎么求微分方程

微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。

例如:

已知微分方程的通解怎么求微分方程

其解为:

已知微分方程的通解怎么求微分方程

其中C是待定常数;

如果知道

已知微分方程的通解怎么求微分方程

则可推出C=1,而可知 y=-\cos x+1。

一阶线性常微分方程

对于一阶线性常微分方程,常用的方法是常数变易法:

对于方程:y'+p(x)y+q(x)=0,可知其通解:

已知微分方程的通解怎么求微分方程

然后将这个通解代回到原式中,即可求出C(x)的值。

二阶常系数齐次常微分方程

对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解

对于方程:

已知微分方程的通解怎么求微分方程

可知其通解:

已知微分方程的通解怎么求微分方程

其特征方程:

已知微分方程的通解怎么求微分方程

根据其特征方程,判断根的分布情况,然后得到方程的通解

一般的通解形式为:

已知微分方程的通解怎么求微分方程

则有

已知微分方程的通解怎么求微分方程

已知微分方程的通解怎么求微分方程

则有

已知微分方程的通解怎么求微分方程

在共轭复数根的情况下:

已知微分方程的通解怎么求微分方程

r=α±βi

扩展资料

一阶微分方程的普遍形式

一般形式:F(x,y,y')=0

标准形式:y'=f(x,y)

主要的一阶微分方程的具体形式

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导镇迹岩数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为御御狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

唯一性

存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。

针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4]  则可以判别解的存在性及唯一性。

针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。

参考资料来源:百度百科-常微分州卜方程

参考资料来源:百度百科-微分方程